883 research outputs found

    Counting Smooth Solutions to the Equation A+B=C

    Full text link
    This paper studies integer solutions to the Diophantine equation A+B=C in which none of A, B, C have a large prime factor. We set H(A, B,C) = max(|A|, |B|, |C|), and consider primitive solutions (gcd}(A, B, C)=1) having no prime factor p larger than (log H(A, B,C))^K, for a given finite K. On the assumption that the Generalized Riemann hypothesis (GRH) holds, we show that for any K > 8 there are infinitely many such primitive solutions having no prime factor larger than (log H(A, B, C))^K. We obtain in this range an asymptotic formula for the number of such suitably weighted primitive solutions.Comment: 35 pages latex; v2 corrected misprint

    Optimal multiqubit operations for Josephson charge qubits

    Full text link
    We introduce a method for finding the required control parameters for a quantum computer that yields the desired quantum algorithm without invoking elementary gates. We concentrate on the Josephson charge-qubit model, but the scenario is readily extended to other physical realizations. Our strategy is to numerically find any desired double- or triple-qubit gate. The motivation is the need to significantly accelerate quantum algorithms in order to fight decoherence.Comment: 4 pages, 5 figure

    A Lattice- Based Public-Key Cryptosystem

    Full text link

    On Lebesgue measure of integral self-affine sets

    Full text link
    Let AA be an expanding integer n×nn\times n matrix and DD be a finite subset of ZnZ^n. The self-affine set T=T(A,D)T=T(A,D) is the unique compact set satisfying the equality A(T)=dD(T+d)A(T)=\cup_{d\in D} (T+d). We present an effective algorithm to compute the Lebesgue measure of the self-affine set TT, the measure of intersection T(T+u)T\cap (T+u) for uZnu\in Z^n, and the measure of intersection of self-affine sets T(A,D1)T(A,D2)T(A,D_1)\cap T(A,D_2) for different sets D1,D2ZnD_1,D_2\subset Z^n.Comment: 5 pages, 1 figur

    Fourier bases and Fourier frames on self-affine measures

    Full text link
    This paper gives a review of the recent progress in the study of Fourier bases and Fourier frames on self-affine measures. In particular, we emphasize the new matrix analysis approach for checking the completeness of a mutually orthogonal set. This method helps us settle down a long-standing conjecture that Hadamard triples generates self-affine spectral measures. It also gives us non-trivial examples of fractal measures with Fourier frames. Furthermore, a new avenue is open to investigate whether the Middle Third Cantor measure admits Fourier frames
    corecore